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Abstract

This paper is one of a series of papers describing the development of a new numerical

approach for solving the steady Navier-Stokes equations. The key features in the current

development are (i) the discrete representation of the dependent variables by way of high

order polynomial expansions, (ii) the retention of all derivatives in the expansions as un-

knowns to be explicitly solved for, (iii) the automatic balancing of fluxes at cell interfaces,

and (iv) the discrete simulation of both the integral and differential forms of the governing

equations. The main purpose of this paper is, first, to provide a systematic and rigorous

derivation of the conditions that are used to simulate the differential form of the Navier-

Stokes equations, and second, to extend our previously-presented internal flow scheme to

external flows and nonuniform grids. Numerical results are presented for high-Reynolds-

number flow (Re = 100,000) around a fmlte flat plate, and detailed comparisons are made

with the Blasius fiat plate solution and Goldstein wake solution. It is shown that the error

in the streamwise velocity decreases like r a Ay 2, where er m 0.25 and r = _ is the grid

aspect ratio.

I. Introduction

This paper is concerned with the continued development of a new numerical approach

for solving the steady Navier-Stokes equations and other conservation laws of the form

oF " ate,
-_x + v_y -- O. (1.1)

The key features in the current development are (i) the representation of the discrete

unknowns by way of high order polynomial expansions; (ii) the retention of all derivatives

in the polynomial expansions as unknowns to be explicitly solved for; (iii) the automatic

balancing of fluxes at cell interfaces without the use of flux limiters or reconstruction; and

(iv) the discrete simulation of both the integral and differential forms of the governing

conservation laws.

In a previous paper (Scott et al, 1995), we formulated a quadratic-expansion discretiza-

tion for the two-dimensional, compressible Navier-Stokes equations. A specific scheme was

constructed for laminar channel flow, and it was shown that the developing boundary



layer could be accurately resolved on relatively coarse grids (as few as six cells per channel

width).

The main purpose of this paper is, first, to provide a systematic and rigorous deriva-

tion of the conditions that are used to simulate the differential form of the Navier-Stokes

equations, and second, to extend our previously-presented internal flow scheme to external

flows and nonuniform grids. Specifically, we (i) derive error bounds for the order-N Taylor

series expansion of the exact solution to equation (1.1); (ii) formalize what is meant by

a discrete polynomial solution to a conservation law and introduce a generalized concept

of convergence; (iii) derive necessary conditions for a discrete polynomial solution of (1.1)

to converge to the corresponding exact solution; and (iv) construct a scheme for high-

Reynolds-number flow past a fiat plate airfoil, and show through comparison with the

Blasius solution that the streamwise velocity is obtained to order r a Ay 2, where _ _ 0.25

and r = __l is the grid aspect ratio.Az

Sections II A. and B. below serve primarily as a review of our original formulation

(Scott et al, 1995). However, here we limit ourselves to incompressible flow, and introduce

a generalized flux vector notation which simplifies some of the derivations. In Section II

C., we deal with items (i) - (iii) as outlined in the preceding paragraph, and Section III

deals with item (iv).

II. Discretization of the Navier-Stokes Equations

A. Incompressible Navier-Stokes Equations

We consider the two-dimensional, steady, incompressible Navier-Stokes equations in

dimensionless form. We assume that the viscosity p is constant, and denote the density

by p and the Reynolds number by Rer., where ReL -- _ The parameters L and Uoo
"

refer to some reference length and velocity, respectively.

Let z and y denote the horizontal and vertical coordinates, respectively, of a two-

dimensional Euclidean space E2. Denoting the horizontal velocity component by u, the

vertical velocity component by v, and the static pressure by p, the governing equations

for the conservation of mass and momentum may be written in Cartesian coordinates as

(Anderson et al 1984)

where

_+_=o

0 2 0
_(_ + p- _-._)+ _(_,,- r.)= o

(_ - _z,) + _(_ + p - _,,) = 0

2 8u Ov

(Zl)

(2.2)

(2.3)

(2.4)
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1 Ou 0v (2.5)

2 (2 Ov Ou
ryy = 3ReL 0y _xx ) (2.6)

(Although 0_ ouor _-_ may be eliminated from rzz and r_y using (2.1), we retain both terms

here to be consistent with our original compressible formulation.)

The integral form of equations (2.1) - (2.3) is given by

_, ._=0 (2.7)¢v)

Js ;,x_ ._=0 (2.8)
(v)

h_,._ =0 (2.9)
(v)

where the flux vectors, h,_, hx_, and hyM, corresponding to the conservation of mass,

x-momentum, and y-momentum, respectively, are defined by

f,_ d,j (u,_) (2.10)

_ d,j (u2+ p_ _z, ,_ _ _,) (2.11)

_,_, d,j (_ _ _,, ,_+ p _ _,,). (2.12)

S(V) is the boundary of an arbitrary region V in E_, and _ is equal to da _, where

is the outward unit normal to S(V) and da is the length of a surface element of S(V).

Equations (2.1) - (2.3) and (2.7) - (2.9) are the differential and integral conservation laws,

respectively, for the conservation of mass and momentum in two space dimensions.

B. Discrete Flux Conservation Equations - Integral Formulation

Let E2 be discretizecl by a mesh with nonoverlapping rectangular regions. We assume

for the time being that the mesh spacing is uniform in each coordinate direction. (See

Figure 1.) Eaz_h of the rectangular regions in the mesh is referred to as both a conservation

element and a solution element (Chang, 1995). A conservation element is a discrete region

in E2 over which the discrete analogue of the integral conservation laws (2.7) - (2.9)

is imposed. A solution element is a discrete region in E_ in which a local polynomial

expansion is employed to represent the physical solution. In general, they need not refer

to the same discrete region. A conservation element is denoted by CE(i,j) and a solution

elementby SE(i,j). The boundaryof a conse_ation elementis denotedby S(CE(i,j)),
and its cell center by (xi, yj).



We assume that the velocity and pressure can be represented on each SE(i,j) by a

polynomial expansion of degree two about the cell center (zi,yj), as follows:

(2.1s)

v(x,y; i,j) de!= _,0.0+ ,,_.°(x-x,) + ,,,.,(u-u._)

"l- l),,,(X--Xi) 2 "_- Ua,x(X--Xi)(_/-- _/j) "1- l,_o,a(_/-- _/j) 2

(2.14)

p(x, y; i,j) ,/e!= p,.. + pt.o(z-zi) + Po.x(Y-Y.i) (2.15)

For clarity, the i, j subscripts have been omitted from the coefficients in the local poly-

nomial expansions. These eoefBeients are the unknowns to be solved for. They are related

to the discrete derivatives (at the cell center) by

u°., = u (2.16)

.,,o = _la_ (2.17)

,,o,, = _/a_ (2.1s)

10Zulc3x 2 (2.19)
U2, 0 _

,,,,, = _/0_ (2.20)

1 02 u/o.h,/z (2.21)
_J'0,2 "-- _ )

and similarly for v and p.

The discrete analogue to equations (2.7) - (2.9) in E2 is then given by

=o
(cE(i,j))

(2.22)

= o
(cg(_,.i))

= o
(CE(i,j))

(2.23)

(2.24)
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where

_ _'J(_,_) (2.25)

and
2

_-" = 3Re_ (2a_/az - a__/ay) (2.28)

1

_.,, - R_,.(_la _ + a_laz) (2.29)

2

%,, = 3Re (2_/ay - _/ax). (2.30)

Equations (_22.22) - (2.24) are a coupled system of integral conservation laws in which
the a_es h,,. ds, _x_" d-_,_d _M. T_ are con_r_edby w_yo_the discrete_ames
u, v and p. Each equation takes the form

= o, (2.31)
(cE(4i))

where the second-order expansion _ isa function of u, v and p. Since the form of

each integralin (2.22)- (2.24)isidentical,the integrationsmay be carried out by way of

equation (2.31),where

F_d,l h". = (_, .a,) (2.32)
and

hi(z, y; i,j ) d,!= ho_o + h[o(z-zi) + ho_(y-y./)

+ h:,,(_- _,)_ + hL(_ - _)(u- u_) + h°L(r/- uj)_

(2.33)

h'(z,y;i,j) ,i,j h_,, + h[o(z-zi) + h_,,,(y-yj) (2.34)

+ h[o(2 - xi) 2 + hYx,,( T, - zi)(_l - _tj) Jr hYo,.,(y - _/j)2.

It is understood that each of the coefficients in (2.33) and (2.34) are functions of the

discrete variables u0,o, vo,0, p0,0, ux,0, v,,o, p,,., etc.. For example, when h corresponds to

_hx_, the term h0_o corresponds to the constant term of the expression u s + p - r_x, and

similarly for the other terms. Once the results are obtained in terms of h, it is a simple
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matt_tod_ve the.orre_ondm,_,_ts for_, _L_,and _y_ bywayofeq._tio_
(2.25) - (2.27).

Since the boundary S(CE(i,j)) of each conservation element isa simple closed curve

in E2, the surface integration required in equation (2.31) can be converted into a simple

contour integral.With _ = d_, where _ is the outward unit normal to S(CE(i,j))

and da isthe length of a surface element in E2, we have

and

where

and

= " dz 7, (2.35)

h.'_ = - h _ dx + h = dy = g"d_ (2.36)
N

at__/ (_ h', h z) (2.37)

d_ d,__/ dz _'+ dy _. (2.38)

If we denoteThe llne integration is taken to be positive in the counterclockwise sense.

the vertices of an arbitrary conservation element CE(i,j) by P, Q, R, and S as shown in

Figure 2, we have

"_*-----f[J(_Q) + S(_) + J(RS) + J(S-'P)] (2.39)
i,j

[J(P-'QQ)]i,jdenotes the flux of _hthrough the llne segment _QQi,i,and similarly for J(QR),

J(_), and J(S-P). We then have (omitting i,j subscripts)

p [ AV (2.40)*'+_- hYdz with Y = Yj + --_-.
j(pQ) d,.=l Q - h_" dx + h.* dy = "/,,-_2"

Similarly,

AzJ(QR) dff _ "J+_ h" dy with z = zi (2.41)

jyi _ A._t - 2

= [ _S(_-_) d,! _ *'+_ h' dx with V = Yi (2.42)

j ,,_,_. - 2

t Az
= ] (2.43)J(SP) d,f YJ+_ h z dy with x = xi + -_-.

J,i-_ -
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Carrying out the fine integrations in equations (2.40) - (2.43), one obtains

Axa [ AY 2s(_-q) = -_-h:., + a, CT-h:. + _ hr. + hr.°] (2.44)

12 h:,, - Au h,;.- -- ,,0+[ 4 2 o,0

j(-Eg) = a=_ h;o - _= [_u" "'Yh:, + h:,°]12 , t--i -h:," 2 ,

s(s_) _¢' r'''_ I'" h. i,. ]12 h_,, + Ay h_0 + += -- t 4 -_- 1,0 0,0.

By virtue of equations (2.31) and (2.39) we require that

(2.45)

(2.48)

(2.47)

s(_--_Q)+ s(_--_) + s(_-9) + s(_--P) - o. (2.48)

Thus, we obtain the flux conservation constraint

hZ ,,0 + h:t = 0. (2.49)

Imposing this condition, we obtain the following expressions for the normalized flux of

across the boundaries of CE(i,j):

J(P'-QQ) Ax2hi° + Ay2 Ay h_: ,_,= - 12 -7- h:,, 2 ''° + h:. (2.50)

s(_-_)
Ay

s(_-$)
Az

Ay 2 Az 2 Az

12 h°L + 4 h,;° 2 h_,. + h._0 (2.51)

A'2 AY2 -_h = + h:0 (2.52)12 h:,o + Th:'= + t,0 ,

J(S-"P) Ay 2 Ax 2 Ax hZ (2.53)_,y - 12 hoL+ -_ _,,:0+ -y ,,0 + h.:o.

The flux expressions above may now be expressed in terms of the discrete dependent

variables of the Navier-Stokes equations by way of equations (2.25) - (2.27). Corresponding

to (2.25), we have

= _,, (2.54)

so that

+x = Y h' = v (2.55a,b)

and the mass flux conservation constraint corresponding to (2.49) is

u,,0 + v0,, = o. (2.58)
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The normalized fluxes for h_ are given by

etc.

Corresponding to (2.26), we have

(2.50)- (2.53), where h_,. - uo,,, h0e,o = v.,.,

where

_ - _zy. (2.58a,b)

The x-momentum flux conservation constraint corresponding to (2.49) is

1 2 (4 vx.,)] 0, (2.59)U,.oU,.,+ u0.,_o.0+ p,., Re [(2u,.,+_,.,) + ] u,.,- =

and the flux expressions for _hx_ are readily obtained by way of equations (2.58) and

(2.50) - (2.53). Thus, one easily obtains the x-momentum flux through the right hand face

of a conservation element,

J(_-_)x_
-- (2.60)

Ay

2 Az2 - 2
Ay2(2Uo.,U0.0 + u,.l + po.,) + -_-(2U,.oU,.0 + u,., + p,.,)12

z_x 1 (2u0., + _1.1) + u,.° + po., (2u1.,- _0.11,
2 Vo,o Uo, x + Uo,o Vo,_ R, er, 3ReL

and similar expressions for the remaimng fluxes. (Here h z has been replaced with -h, _1,0

because it gives a simpler expression.)

Similarly, corresponding to (2.27),

__= _ (2.01)

with

hZ = 9_ - _zy ¥ = v2+ p _ r_t. (2.62a,b)

The y-momentum flux conservation constraint is

1 2 (4_0.,- u,.1)] = o, (2.03)vl,oUo,o + Vo,lVo.o+ p,.l Re, [(2V2.o+Ul.1)+

and the flux of _y_, through the right hand face of a conservation element is given by

_(_-P)_,,
Ay

(2.o4)



Ax 2 .

a_2(v°'2u°'°12+ ,0._v0.0+ _o.luo.1)+ -_-(_.0-0.0+ -,.0_o.0+ _,.0-1.,)

Ax 1 (2v,,,+ul,,) + u0,0v0,o (u°.1+vl,0).
+ -'_ Uo,o Vl,o + Vo,o Ul,o Re,. Rer

The following conditions axe then satisfied on each conservation element:

J(P--Q)u + J(-Q"R)u + J(-R--S)_ + J(-S'P)u = 0 (2.65)

J(-_Q)x_ + J(QR)x_ + J(R'--S)xu + J(S"--P)x_ = 0 (2.66)

J(-P--QQ)y_ + J(QR)yu + J(-R-'S)y_ + J(-S-P)zu = O. (2.67)

The above formulation provides the framework through which integral flux conserva-

tion is achieved. We may now turn our attention to the differential conservation laws (2.1)

- (2.3).

C. Discrete Flux Conservation Equations - Differential Formulation

In the previous section,we derived the localconstraint (2.49),

h z1,0 + h_l = O,

to ensure that the discrete flux vector h (defined by (2.32) - (2.34)) satisfies

= o.
(cg(i,j))

Now we observe that, by virtue of (2.49), h also satisfies

9.K =0
N

at (_,u) = (x_,yi),

i.e., the differential conservation law is satisfied at the cellcenter.

Suppose that we further require h to satisfy V- h = 0 identically throughout each

SE(i,j). Then one obtains two additional local constraints,

2h:,o + h;., = o (2.6s)

h_,, "4- 2hY,,2 = O. (2.69)

Our main objective in this section is to rigorously derive the above two constraints

from first principles. We show, in particular, that enforcement of these constraints ensures

the satisfaction of necessary conditions for the discrete second derivatives to converge to

their analytical counterparts.
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Throughout this section, we shall make use of the following result, which may be

established by induction.

I, emma _.1 Let h -- (hZ, h _) be defined and continuous on an open domain :D of

E2, and let the partial derivatives of h ffi and h t exist to all orders and be continuous on

:D. Then, h satisfies V- h = 0 throughout :D if and only if its partial derivatives satisfy

O" h "_ O" h Y

Ox,_j, Oy k (z,y) + Oz,,_k_l Oyk+ l (x,y) = 0 (2.70)

for n -- I, 2, 3, ... and k- 0,1, 2, ..., n - 1,

for every (z, y) in :D.

As a preliminary to what follows, we first consider the N-th order Taylor series ex-

pansion of the exact solution h of the conservation law

V-7_ =0. (2.71)

We assume that h = (h x, by) satisfies (2.71) throughout some open domain :D of E2, and

that h is analytic throughout :D. Let h_ denote the N-th order Taylor series expansion of

about a point (x0, yÙ) in :D. Then

.=o _=z,._oLOx"-I'Oy z_ (n- k)! k!
(2.72)

and

" _-_r O"h, . .1(x-x0) "-k (y-yo);' (2.73)h..(x,y) = _ [0x-----w-0___°'_°_j (.- k)! k!
n--O k=O

Since

N n--1

Oh_r r O"h" 1 (x - x°) "-k-1 (y - y0) _ (2.74)
Ox = Z Z [oxn-t, Oyk(Xo, Y°)l (n- k- 1)! k!

n:l k:O

and

N _r Onh It "t (x -- Xo) n-k (y -- yo) (k-l)- _2 [o_--kou"(x°'Y°)J(n- k)! (k- _)!
_-_-1 k_l

.-1[ 0"h, y.)] (__ _0).-_-1 (y 07= _ Z LOx,,-z,-xOyk+, (Xo, _n---__--]_-). t k y , (2.75)
n:l k:O

it follows from I, emma _.1 that hN is a solution of equation (2.71). We will refer to hs as

the exact order-Nsolutior_ of (2.71).

10



Let (x, y) be another point in D. Then, as an approximation to the exact solution K

at (x,v), the enor in L, is givenby

h'(z,y) - h_(_,v) = "+'r o"+'h"
E l.Ox_+---_-:__kOyk (2_,y_')] (N + 1 - k)! k!
k:0

(2.76)

h'(x,V) - h'_(x,V) = N+,[ 0_+,hy
_tO.r_+--4-i:___0Vk(x;,v;)] (x - Xo)'+l-k (v Vo)k (2.77)

where (x_, V;) and (z;, v_) axe points on the line segment between (x,, v0) and (z, v) (Buck,
107s).

Now suppose that

0N+I h z

IOzt,+l_,Oy, I <_ MN+I,I, and [ ON+'h"Ox_r+l__Oy_ l_ < M_+l,k (2.78)

in a neighborhood No of (xo,y,) for k = 0,1, ...,N+I. IfAx

where (z, V) is any point in No, then

= (X-Xo) and Av =

If we let

(V-Vo)

N+I lazl.+l_k laylk
IlK- K_lloo _< _ M_+I,_(N + 1- k)l kt (2.79)

k=0

MN+I = sup{M_+l,k k = 0, 1, ..., N + 1}, (2.80)

we have the more conservative error estimate

MN+I(N + 2)[m_x(IAxl,IAvl)]N+*
IlK- K_lloo< [(_)!]z (2.81)

where [(N2-_O-)l]2d'd (_)! (N2-_)I if N is even.

The exact order-N solution hN is the prototype discrete polynomial approximation

to the exact solution h. Its order of accuracy is given by (2.81). We may now turn our

attention to approximate order-Nsolutiotts to (2.71). We begin by formalizing the notions

of "a discrete polynomial approximation" and "convergence."

Definition $.1 Let (x0, Y0) be a point in E2, and let Ax and Ay be positive numbers.

No,_xA v = {(x,y): Ix-xol < _---_and ]y-yol < _2--_.}. Then, alocal discrete polynomialLet

approximation to the exact solution of equation (2.71) is a function _N a'd (.h_,,_hYN)

defined on Noazay by
N n

= hn_k,k(A ,Ay) (z xo) n-k (V-- Yo)' (2.82)

n=0 k=0
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N n

h_(_,v) = _h'._k,,(a_,av)(_-_0)"-*(y-y0) k, (zs3)
n----O k----O

Y
where h,__k, k and h,__,_ axe functions of Ax and Ay.

Definition _._ A local discrete polynomial approximation _, converges to order K

to the exact solution K of the conservation law V. 7_ = 0 as Az --. 0, Ay --. 0 if and

only if for any e > 0, there exist numbers 61 > 0 and 62 > 0 such that when Az < 61 and

Ay <62,
0"h" 1 1

[h:_.,.(:,_,a_) o_"-'oy '('°'_°1 (,,-k)! k![ < e (zs4)
O"h_ 1 1

o -- oy (,,-k)! k![ <
for n : 0, 1, ..., K, and k = 0, 1, ..., n, and the remainder _Rx = .hN - .hx --+ 6 as Ax --, 0,

Ay-+ 0.

We may now state and prove the two following important theorems.

Theorem t,.1 Let e be azly positive mtmber, and let 0 _< K_< N. If hN(AX, AN)

converges to order K to the exact solution h of the conservation law V-7_ = 0 as
.,p

Az --+ 0, A F -* 0, then for all sufficiently small Az and AF,

liT,- __(Ax,AN)lloo< _.

Proof: We have

= + s, - (_.t,,)

_> IlK-_K_lloo< IlK-L_lloo+ IIK_-_KNIIoo (_._b)

IlK-_L,Iloo_ IlK- L, Iloo+ IIK_- _K_lloo+ IIR_- #_11oo (t._=)

where/_x = h.- h x and _RK = .h.- .hK- The first two terms on the right hand side

of (]L_c) are ea_ less than _ for sutticiently small Az and AN, and the third term is a

polynomial whose lowest order term is of degree K + 1. Since the coe_cients of/_x are

fixed, and .Rx _ 0", the third term is also less than } for sufficiently small Ax and AN,
and the theorem follows.

Theorem _._ Let e be any positive number, and let 1 < g < N._ _(Az,AN)
converges to order K to the exact solution K of the conservation law 7_ = 0 as

Ax --. 0, Ay --. 0, then for all sufficiently small Ax and Ay,

(n-- k) h:_k,k(Ax, Ay) q- (k q- 1) hn_k_l,k+I' (Ax, AN) <

for n = 1, 2, ...K, k = 0, 1, ...n - 1.

12



Proof:

Since _N(AZ, Ay) converges to order K, for any n = 1, 2, ..., K, and k = 0, 1, ..., n - 1,

we have
- O"h • 1 1

h" Am A (_.3a)

r a-a,_ yo)] : : (_.Sb)h',_,,_,,,,.,.l(/',_,,",y)_ La_._.-t-_o¢,+,(_o, (_- k - 1)! (k + i)!

so that

" O"hX l 1 1(_- k) h___,k(Ax,Z_) -_ [ax_-=-_0yk(_°' Yo).(.- k - 1)! k_

r 0 "hy ,. ,I 1 1

(k -I- 1) hYn_k_l,k+l(A,T,,A_l) --'_ [oqxn_'_'Z_o-_k4.i _,"To, _/o)J (r$ -- k - 1)[ "_,

=), (n- k) h__k,_(Ax, Ay) + (k + 1) h__t_1,k+1(Ax, Ay)

l" O"h_ (Xo, y0) + O"hY (Xo,yo)] 1 _.'1
tOxn-,Oyk Ox--*-:O_k+l (. - k - :)!

But since h is a solution of the conservation law,

(_.sc)

O"h" O"hY (Zo, y0)] = 0OX_Oy k (Zo, Yo) "+ Ozn_k_lOyk+:
(_.31)

by Lemma L1. Thus,

(_.sg)

as Ax --* 0, Ay --* 0, and the theorem follows.

The meaning of Theorem £.g becomes clear when we consider the divergence of _hN.

With _ de__/ (_h_,h_) defined by (2.82) and (2.83), we have

.N .--1
0

h_(_,y) = _ _ (- - k) h,___,k(_- _°).-k-, (y _ _o)_ (2.86)
n----1 k----0

0
= EE

n=l k=l

k Yh._k.,.(x =.).-_,(y_ yo)a,-x

N .--1

E E (k "_"1) hYn_k_i,k_l.l(X, -- XO) "-'-I (Y -- _/o) k

n----1 k=0

(2.87)

so that

o a h'_(_, _)V-h_ = a-_-_(x'_) + (2.88)
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According to Theorem _._,a necessary condition for h'_ to converge to order N isthat

(n- k)h:-k,k+ (k+ I) ' (2.89)hn_k_l,_+ 1 _ O

as Ax, Ay _ 0, for n = I,2,...,N, k = 0,I,...,n - I.

The implications of thisare especiallysignificantwhen itcomes to numerical calcu-

lations.In general, the mechanism whereby conditions (2.89)are satisfieddepends on the

particular numerical method being used. Finite-differencemethods, for example, satisfy

each of the conditions (2.89) to a certain order through the differenceapproximations

that are used. In this case, condition (2.89)is satisfiedto a given order, say order L, for

n = 1. Then for higher values of n, conditions (2.89) are satisfiedto an order which is

lessthan or equal to L. The higher order constraintsexpressed by (2.89)do not resultin

independent conditions for a finite-differencescheme. Rather, the higher order constraints

are automatically satisfiedby virtue of the differenceequations employed to satisfy(2.89)

corresponding to n - 1.
Y

On the other hand, when one solvesfor the unknown coeIBcientsh__t, k and hn_k, k

directly,as in the present approach, each constraint associated with (2.89) represents an

independent condition. Thus, to ensure that (2.89) isalways satisfied,one should require
Y

h__t, k and h,__, k to satisfy

(.- k) + (k + I) ' (2.90)z hn_k_l,k+ 1 "-- O

for n = 1,2,...,N, k = 0,I,...,n - I. That is,hN should be a solution of the conservation

law, and for the special case of N -- 2, constraints (2.68) and (2.69) should always be

imposed. As a result, conditions (2.89) are not satisfiedjust to a certain order as in

finite-differencemethods, but rather are satisfiedidentically.
y

Since the coei_cients h___,k and hn_k,k are functions of intermediate variables,each

constraint associated with (2.90) must be expressed in terms of the intermediate vari-

ables. For the Navier-Stokes equations, this can be accomplished using (2.25) - (2.27).

Equations (2.68) - (2.69),corresponding to the conservation of mass, z-momentum, and

y-momentum, then become

2u2,0 + vi,1 = 0

ul.t q-2Vo.= = O

2(2Uo.oU2.o + u _ + P3.o) + u_.xVo., + vt.lUo.o + Ul.oVo.1 + uo.lVl.o = O1,0

2u_.luo.o + 2u_.ouo.z + p,._ + 2(Uo.oV,.2 + Vo.oUo._ + vo._Uo._) = O

2(Uo.oV2.o + Vo.oU2.o + V_.oU_.o) + 2vl._Vo., + 2V_.oVo._ + p_._ = O

(2.91)

(2.92)

(2.93)

(2.95)
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2
u1.1vo.o + v1.1Uo.o % ua.ovo._ % uonv,.o % 2(2Vo.oVo.2 4- vo, , + Po,2) = O, (2.96)

respectively. Note that these constraints ensure the satisfaction of necessary, but not

su_cient, conditions for the discrete second derivatives to converge to their analytical

counterparts.

HI. High-Reynolds-Number Flow Past a Finite Flat Plate

We now apply the discretization outlined above to the thin airfoil boundary layer

problem. Consider the mesh shown in Figure 3. The airfoil lies on the x-axis between

z = 0 and z = 1, and has uniform spacing in each direction. Note that the mesh includes

an upstream and wake region.

Let N/ and Nj denote the number of solution dements in the x and y directions,

respectively. Then, representing u, v, and p by way of the local expansions (2.13) - (2.15),

there are 18 discrete unknowns per cell, for a total of 18NiNj unknowns altogether. We

thus require 18NiNj conditions to have a dosed system of equations.

The flux conservation constraints (2.56), (2.59), and (2.63), together with the differen-

tial constraints (2.91) - (2.96), immediately provide 9NiNj conditions. These constraints

ensure that the discrete flux vectors defined by (2.25) - (2.27) satisfy both the integral and

differential forms of the governing conservation laws.

To ensure that mass and momentum are conserved globally, we must require that fluxes

be conserved across cell interfaces. Using (2.51) and (2.53), the generalized statement of

flux conservation across vertical interfaces is given by

Ax 2 Az
h z h z ][/x_2 h_ + + +t_- , ¥ h_,o T ,.,o o,o,__

_ IA_,_ _,_ t,_ h- ] = 0. (3.1)t_-hoL + ¥ h_,° 2 h_,o+ o,o,

r'orco,-,servationofmass,(3.1)becomes(using(2.55))

[/w2 zxx' zxx ,.,o,°],__-i5 -u°'_ + --T-u,,, + -_-u,,, +

_ lAY 2 Ax 2 Az ] = 0. (3.2)t-_'-u°'2 + _ u_,o 2 u,,0 + U0,o i

A similar statement is obtained for mass conservation across horizontal interfaces. Using

(2.58) and (2.62), one derives the analogous expressions for conservation of z and y mo-

mentum. Thus, one obtains a total of 3Ni(Ni - 1) + 3Ni(Nj - 1) - 3N. interface flux

conditions, where N. is the number of solution elements between the airfoil leading and

trailing edges.

Boundary conditions account for an additional 4Ni + 3N 1 + 4N. conditions. For each

cell adjacent to the airfoil, we require the mass flux through the wall face, and the u velocity
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component at the midpoint of the wall face, to be zero. At the upstream boundary we

specify the velocity, and at the downstream boundary we specify the pressure. Along the

free-stream boundary cells, we specify zero y gradient conditions for u and v.

Finally, as a means of imposing the zero (constant) pressure gradient condition, we

set

pl.x = 0 P2.0 -- 0. (3.3a,b)

These conditions are both justified when the Reynolds number is large, since the pressure

is nearly constant except near the singular leading and trailing edge regions. A scheme

which retains P1,1 and p2.0 has also been developed and implemented (Scott et al, 1995).

Numerical results for the fiat plate problem have shown that p1.1 and p2.0 are negligible for

Reynolds numbers greater than about 7500.

The above conditions ensure the satisfaction of local and global flux conservation,

boundary conditions, and all other relevant physical requirements. We are now free to

impose any other physically realistic condition to close the system. The number of condi-

tions needed is Ni(Nj - 1) - N,. This is precisely the number of horizontal interfaces in

the mesh (minus those that coincide with the airfoil). Consequently, there is an additional

degree of freedom in specifying horizontal interface conditions. For the present problem,

we require the u velocity to be continuous at the midpoint of each horizontal interface.

By virtue of conditions (3.3), there are 16 unknowns on each solution element. How-

ever, using the local constraints (2.56), (2.59), (2.63), (2.91), (2.92), and (2.96), six of the

unknowns may be eliminated in terms of other variables. The total number of unknowns

that must be explicitly solved for is then IONiNj.

The discrete boundary value problem outlined above is a coupled system of second-

order polynomial equations in the unknown coelilcients u0.0, v0,0, p0,0, etc.. Our experience

has shown that this system may be solved very efficiently using Newton's method.

In what follows, we discuss numerical results for high-Reynolds-number flow (Re -

100,000) around a finite fiat plate. Previous efforts to solve the full Navier-Stokes equations

for the fiat plate problem have usually involved a vorticity-stream function formulation

(Dennis et al, 1965; McLachlan, 1991). To our knowledge, no solutions to the full Navier-

Stokes equations have yet been published for Reynolds numbers higher than about 4000.

McL_ (1991) has reported some of the numerical difficulties that are encountered

as the Reynolds number approaches 4000. On the other hand, as we stated above, our

assumption (3.3) becomes invalid for Reynolds numbers less than about 7500. As a result,

no direct comparison with vorticity-stream function results can be made at this time.

However, at the very high Reynolds number of 100,000, we may compare with the analytical

solutions of Blasius (1908) and Goldstein (1929) to assess the accuracy of our results.

The Blasius solution may also be used as a guide for constructing a mesh for numerical

calculations. If we let Re denote the Reynolds number based on the airfoil chord c, then

the similarity relation (Sctdicting, 1979; White, 1974)

- y (3.4)
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becomes

= y,/ UlU (3.5)
c

where all quantities except ,1 and Re are dimensional. Identifying the free-stream velocity

U with Uoo, and assuming constant viscosity, equation (3.5) becomes

,7= (3.6)

Corresponding to any rh x and V are related through the equation

= # . (3.7)
C

Equation (3.7) allows us to estimate the location of the edge of the boundary layer for any

fixed zc. We take ,7 = 6.0, corresponding to _- = 0.999999, (White, 1974) to be the edge

of the boundary layer. An estimate of the boundary layer thickness//z at any { is then

givenby

(3.8)

At the trailing edge we have the estimate

6t.,. = 6.0_e. (3.9)

When Re = 100,000, one gets _t.e. - 0.0268. The free-stream mesh boundaries may then

be taken to be V = 4-0.027. Similarly, at the leading edge, say { = .01, the estimated

boundary layer thickness is 0.00268 _ 0.0027. An estimate for A_/ is then 0.0027/Nz.e.,

where Nt._. is the number of cells required to resolve the leading edge boundary layer. If

Nl.e. = 2, one obtains A_/ = .00135. (Recall that the present discretization represents u

quadratically. See (2.13).)

Unlike the free-stream boundaries, the upstream and downstream boundaries may be

located somewhat arbitrarily. For the present study, we take the upstream boundary to

be z = -0.1, and the downstream boundary to be x = 1.5.

Newton's method has proven to be a robust solution technique for the present dis-

cretization. Our experience has shown that an initial guess of uniform flow is usually

sufficient to ensure convergence. However, convergence problems have been observed for

certain mesh spacings and grid aspect ratios. In Figure 4 we show the results of a system-

atic study which was performed to determine the scheme's domain of convergence at Re

= 100,000. For purposes of the study, we limited the number of solution elements in the

x direction to 400, and in the !/direction to 60. This corresponds to minimum x and 1/

spacings of 1 = 0.004 and .027_T6 -_ = 0.0009, respectively. The mesh boundaries were held
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fixed at y = +0.027, z = --0.1, and z = 1.5. The scheme is stable and convergent on the

boundary and interior of the region shown in Figure 4. The scheme remains stable and

convergent to the exterior of the dashed portion of the boundary, but becomes unstable

and/or nonconvergent to the exterior of the solid boundary. (Vv'e should point out that

when we used symmetry to solve for only the upper half flow field, the scheme was un-

stable for all mesh spacings. Apparently, the instability was caused by the leading edge

singularity, which invalidated our symmetry boundary condition.)

Using our earlier estimate Ay = .00135 for the y mesh spacing, along with the fixed

grid boundaries described above, we obtain a baseline grid by choosing a grid aspect ratio

r = _-_ Taking r = .155, we obtain a baseline 185 x 40 grid with _z = .0087.
A z •

For fiat plate flow at high Reynolds numbers, it is well known that the Blasius solution

provides the correct boundary layer profile over a substantial part of the airfoil. Stewartson

(1969) and Messiter (1970) have shown that the Blasius solution remains valid to within

an O(Re-i) region near the trailing edge. On the other hand, near the leading edge, the

Blasius solution is not valid but becomes valid as Re, (Reynolds number based on distance

from leading edge) becomes large (Jones et al, 1988).

Figure 5 shows how our Navier-Stokes solution differs from the Blasius solution for a

series of calculations that were performed on successively finer grids. The coarsest mesh is

the baseline grid described above. Each succesive grid is refined by adding four cells in the

y direction and holding r constant at .155. The finest grid is 313 x 68 with Ay = .000794,

Ax = 1--195= .00513,and r = .15485.The showsIlu0,0- usllo = max l-0.0- usl
as a function of z for the full length of the airfoil, where us is the Blasius streamwise

velocity. The results indicate that our Navier-Stokes solution and the Blasius boundary

layer solution are in closest agreement at around z = .75, the three-quarter chord point.

In Figures 6 and 7, using results from the baseline and 313 x 68 grids, we compare u0.0

and v0.0 with their analytical counterparts at z = .25, .5, and .75. The results obtained

from the finest mesh clearly show excellent agreement for both u0.0 and v0.0. At z -- .75, the

maximum difference between u0.0 and us is .00157. If we take us to be the exact solution,

we find the maximum relative error of u0,0 to be .0032 at z - .75. For the baseline grid, we

find a maximum absolute error of .00486, and a maximum relative error of .0265. Based

on these results, we estimate that the fine grid calculation is in error by less than .32%,

and the baseline grid is in error by less than 2.7%.

We now examine the rate at which the error (i.e., []u0.0-us[[oo at z - .75) is reduced

with mesh refinement. Figure 8 shows the effect of reKnlng in the z direction while _/is

held constant. Surprisingly, the results show that z grid refinement at constant Ay (i.e.,

increasing the grid aspect ratio) leads to an increaae in the error. As Ay decreases, this

effect becomes stronger. Figure 9 shows a log-log plot of the error versus r. The slopes for

the four cases are .156, .230, .310, and .390.

It follows from the above that mesh refinement in the y direction must be done at

constant r if we wish to determine how the error is reduced with Ag. FigLu-e 10 compares

the error from 148 x 32 and 296 x 64 grids with r fixed at .15525. The maximum error is
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.007118and .001754,respectively, so that the error is reduced by a factor of 4.06.

Figure 11 shows a log-log plot of the error versus A F for five grids with r -- .15525.

The fine-grid to coarse-grid slope is 2.02. The four intermediate slopes are, from left to

right, 1.84, 2.24, 2.35, and 1.71, for an average slope of 2.035. The reduction in error is

thus second order in Ay.

The above results imply that the error decreases like ra Ay 2 where, roughly, 0.156

c_ _ 0.390. Mesh refinement at constant Ax confirms that this is the case. Refining a 296

x 32 grid to a 296 x 64 grid reduces both r and Ay by a factor of two. Taking a -- .156,

one predicts that the error will be reduced by a factor of (2 °"158) (22) -- 22"15_ _ 4.457.

From numerical calculations we obtain an error reduction factor of .007913.001754 --- 4.511, which

corresponds to a _ 0.174. Similarly, refining a 296 x 56 grid to 296 x 64, one predicts that

the error will be reduced by a factor ranging from (7s-)2"156 __ 1.334 to (_)2.s9 __ 1.376.

From numerical calculations we find that the error is reduced by a factor of .00_4_2 1.381,
.001754

which corresponds to a - 0.417. The above results are summarized in Table 1, along with

additional results. We find that a assumes an average value of 0.247. The one anomalous

result, where a = -.395, results from an unusually favorable accuracy on the 313 x 60 grid,

as is evidenced by the last case shown in the table, where a - .586.

We now present numerical results :for the pressure coefficient, coefficient of friction,

and wake velocity (from the 313 x 68 grid described above). The trailing edge pressure

singularity shown in Figure 12 indicates that C'p assumes a minimum value of -.0149. This

compares well with the results of Srinivasan et al (1992), who studied flat plate trailing

eclge flow at Re -_ 100,000 using a reduced Navier-Stokes (RNS) scheme.

The results shown in Figure 13 indicate that our Navier-Stokes U! is slightly larger

than the Blasius C! (C!(B) = .ss41__._ j near the trailing edge. This agrees with the findings
of a number of researchers who have derived second-order corrections to the Blasius drag

(Kuo, 1953; Imai, 1964; Stewartson, 1969; Messiter, 1970). Near the leading edge, our

results show a small decrease in C! which continues up to x - .0231. The net result is

that the increase in C! near the trailing edge is more than cancelled by the decrease at the

leading edge, and we obtain a drag coefficient of .004171 which is 99.31% of the Blasius
1.3282

value of .004200 -- _.

In Figure 14 we compare with Goldstein's (1929) wake solution. The solid lines in

the figure are our Navier-Stokes solution. They were generated using the full functional

representation of u on each cell (see 2.13). The diamond-shaped symbols represent the

numerical solution at the cell center (i.e., u0.0), whereas the squares are Goldstein's solution.

(For accuracy reasons we limited the comparison to points where Goldstein's rl was less

than or equal to .75.) The results show that the agreement is not very good until around z

--- 1.15. This is consistent with triple deck theory, which has shown that Goldstein's wake

solution is not valid in an O(Re-_) region near the trailing edge. It is clear, however,

that our numerical results do not agree nearly as well with the Goldstein wake solution as

they do with the Blasius flat plate solution. This can be attributed to the fact that the

Goldstein solution is an asymptotic solution to the boundary layer equations, whereas the
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Blasius solution is an exact solution (admittedly obtained by numerical means).

We conclude with a discussion of results from nonuniform grids. Since the entire

discretization presented in Section II remains valid if Ax and Ay are replaced by Azi and

Ayj, respectively, application of our scheme to variably-spaced grids is straightforward.

The results shown in Figures 15 and 16 are taken from fine and coarse grids, respec-

tively. The fine grid is 240 x 40 with 4.1% exponential y stretching and has Ay(wall)

d¢__fAF w = .0009. The coarse grid is 112 x 20 with 14.7% exponential y stretching and

Ay w = .00135. The solid lines in the figures are obtained using the full functional solution

for the u velocity, and the diamonds correspond to values of u,,0. Comparison is made

with both the Blasius and Goldstein solutions. The accuracy of the fine grid solution is

comparable to that of the _nest uniform grids considered above, and the accuracy of the

coarse grid solution is comparable to that of the baseline 185 x 40 mesh. We obtain drag

coefficients C/_ - .004166 from the fine grid and CD = .004124 from the coarse grid. Based

on our earlier drag results, we estimate that these values are in error by less than .4% and

1.4%, respectively. Both computations converged in eight Newton iterations, starting from

uniform flow, to a maximum residual error which is less than 1.2 x 10 -1°. The CPU times

on a Cray YMP were 580 seconds for the fine grid and 50 seconds for the coarse grid.

These times would be reduced by about 15% if our code was optimized for computational

efficiency instead of storage efficiency.

Finally, we should mention that numerical stability for nonuniform grids depends

rather strongly on the wall grid aspect ratio, rw _ Our experience has shown that

the domain of convergence in Figure 4 very nearly provides the domain of convergence for

stretched grids if one replaces r and AS/with r_ and Ayw, respectively.

Concluding Remarks

The numerical results presented above have clearly shown an accurate resolution of

the flat plate flow field. We showed in particular that the streamwise velocity is obtained

to order r a AF 2, where a _ 0.25. In a future paper we will perform a similar analysis to

determine the order of accuracy of the discrete deriwtives.

Finally, the effort to generalize the discretization presented in this paper is ongoing.

We recently presented (Scott et al, 1995) a methodology for retaining all the discrete

unknowns in the local expansions, and extended the discretization to quadralateral con-

servation elements of arbitrary shape. Numerical results obtained to date would seem to

indicate that the present approach offers significant potential to resolve laminar boundary

layers on relatively coarse grids with only moderate computational effort.
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296 x 48 to 296 x 64

296 x 56 to 296 x 64

313 x 36 to 313 x 68

313 x 44 to 313 x 68

313 x 52 to 313 x 68

313 x 60 to 313 x 68

313 x 52 to 313 x 60

Error Ratio = e,/e2

.007913 = 4.511

.001754

.005497

.001754 = 3.134

.003,181

.oo1754 = 1.985

.002422

.oo175, = 1.381

.006341

.001573 = 4.031

.004292

.oo1573 -- 2.729

.o027s4 = 1.770

.001573

.001923 1.223

.001573 --

.oo2784 _ 1.448

.001923

loz( , )/loz(Av, )

2.174

2.430

2.383

2.416

2.192

2.306

2.128

1.605

2.586

a_

0.174

0.430

0.383

0.416

0.192

0.306

0.128

-0.395

0.586

Table I Grid refinement at constant Az. affivs ---- .247
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Re = 100,000.
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Pressure coefficient in the trailing edge region.

313 x 68 Grid.
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Figure 13

Stokes solution versus Blasius Cf at Re = 100,000.

Comparison of coefficient of friction from computed Navier-

313 x 68 Grid.
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Y O Numedcel (cell center)
o Goldstein

O.OLOO _ Numedcel

0.0050

025 u o.5o o.75 1.oo

Figure 14 Comparison of predicted u velocity with Goldstein wake solution

at x = 1.00256, 1.04672, 1.1, 1.15128, 1.20256, 1.3, and 1.5. 313 x 68 Gri¢L
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0.0200

0.0150

Y

0.0100
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<> Numedcal (cell center)

o Blasius
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Figure 15a Compandon of predicted u

x = .25, .5, .75.

0.50 0.75 1.00

velocity with Blasius solution at

240 x 40 Stretched GrkL Re = 100,000.
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Figure 15b Comparison of predicted u velocity with Ooldstein wake solution

at x = 1.00333, 1.05, 1.10333, 1.15, 1.20333, 1.30333, and 1.49667.

240 x 40 Stretched Grid. Re = 100,000.
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Figure 16a Comparison of predicted u velocity with Blasius solution at

x = .25, .5, .75. 112 x 20 Stretched Grid. Re = 100,000.
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Figure 16b Comparison of predicted u velocity with Goldstein wake solution

at x = 1.00714, 1.05, 1.10714, 1.15, 1.20714, 1.30714, and 1.49286.

112 x 20 Stretched Grid. Re = 100,000.
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